Note: Answer all questions. All question carry equal marks.

Q.No. Solve any five Question from the following all question carry equal marks.

1. a. State and prove Morer's Theorm.
b. Evaluate $\int_{c} \frac{z-1}{(z+1)^{2}(z-2)} d z$ Where $\mathrm{C}:|\mathrm{Z}-\mathrm{i}|=2$
2. a. State and prove Maximum modulus principle
b. Explain Hadamard's three circles Principle.
3. a. if $w=\left(\frac{z-c}{z+c}\right)^{2} \quad$ Where c is real and +ve find the area of the Z-plane of which the upper half of the w-plane is the conformal representation.
b. Define Exponent of convergence and show that Exponent of Convergence σ of a sequence $\left\{z_{n}\right\}$ in given by $\sigma=\lim _{n \rightarrow \infty} \operatorname{Sup}\left\{\frac{\log n}{\log \left(z_{n}\right)}\right\}$
4. a. Evaluate $\int_{c} \frac{z-3}{z^{2}+2 z+5} \mathrm{~d} z$ Where C is a circle

$$
\text { i. }|z|=1 \quad \text { ii. }|z+1-i|=2 \quad \text { iii. }|z+1+i|=2
$$

5. a. Explain Schwarg's Reflection Principle with Example.
b. Obtain Jensen's formula.
6. a. Prove that $\sqrt{(\pi)} \sqrt{2 z}=2^{2 z-1} \sqrt{(z)} \sqrt{\left(z+\frac{1}{2}\right)}$
b. Find the Taylor's and laurents series which represents the function.
$\left(\frac{\left(z^{2}-1\right)}{(z+2)(z+3)}\right) \quad$ in the region.
i. $\quad|Z|<2$ ii. $2<|Z|<3 \quad$ iii. $|Z|>3$
7. State and prove Montel's Theorm.
8. a. State and prove Inverse function Theorm.
b. Use Rouche's Theorm to show that the equation $z^{2}+15 z+1=0$ has one root is the dise $|z|<3 / 2$ and four roots in the annulus $3 / 2<|z|<2$.
9. a. Show that the mapping $w=\sqrt{z}$ transforms the family of circles $|z-1|=\boldsymbol{\lambda}$ into the family of lemniscates
$|w-1||w+1|=\lambda$.
b. Prove that $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} \mathrm{~d} \theta=\frac{2 \pi}{b^{2}}\left\{a-\sqrt{a^{2}-b^{2}}\right\}$
10. Stae and prove cauchy -gours at theorm.
